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“Big Data” in Biomedicine:
The Real Problem

BIOMEDICINE IS TOO DATA POOR FOR SUSTAINED
“BIG DATA” APPROACHES =>
MACHINE LEARNING + EVOLUTIONARY COMPUTING

Model from Physical Sciences => Integration of
Simulated Data into Investigatory Workflow
Contra 1: Our Models not “Good Enough”

Reply 1: Criteria for “Good Enough” not suitable to
use of M&S in Biomedicine

PROPOSED: Use of sufficiently complex MSM to
identify investigatory boundaries to constrain/
direct Experimental/Clinical Investigation
EXAMPLE: How controllable is Sepsis, and what
would it take to deliver Precision Medicine =>
“Right Drug, Right Patient, Right Time”

Determining Controllability: GA for Multimodal Control

A: single parameter set, 100 stoch replicates e

Embracing Heterogeneity: Biology as Parameter Space

BIOLOGY = HETEROGENEITY OF PHENOTYPE
FROM COMMON STRUCTURE

CONTRADICTION:
 Experimental Biology => Reduce Outliers => “brittle results”
* Biology => Science of Outliers (Need for Evolution to work)
PROBLEM:
e Current standards of Calibration, Validation and Prediction in

M&S drawn from Physical Sciences w/ binding Natural Laws
* Biology doesn’t have corresponding binding Natural Laws
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* Healing * Overwhelming Infection * Clinically Relevant * Healing/Infection * Healing/System Failure * Infection/System Failure

RESULT: Models of Experimental Systems that don’t transfer/  predictability from State ID (Data)? => Nope. Random Dynamical

link across systems/populations => “Crisis of Reproducibility”
CONCLUSION: Current approach to evaluation Biomed M&S not
appropriate to characterize Biology

SOLUTION: Use M&S to characterize the “denominator” of
biosystem heterogeneity => Parameter Space Exploration (vs.
Parameter Fitting)

GA-derived intervention significantly

System with Probabllistic Basins of Attraction (PBoAs)
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Results: Effective Control for Most, but Lots of Levers

Poor performance on Alternate Set 3 => due

Efficiently search a large parameter space using
evolutionary principles (Fitness/Inheritance/
Mutation)

reduces mortality rate in training set
and generalizes well to several
alternate parameter sets

to fixed-length interventions and inability to
adapt to non-responders in real-time?
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300 billion combinations/sequential intervention,
10°1 for 8 sequential interventions
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e Run simulation with intervention

 Test intervention for “fitness”

* Top 50% fittest individuals breed w/ mutation

 Repeat until convergence to small set of solutions

e GA trained on 1 individual, RNG was reseeded at
start of Intervention
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Conclusion: Proxy MSMs to Define Epistemic Boundaries
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scope of the problems/solutions => Avoid
cul-de-sacs and dead-ends

Sufficiency of MSMs evaluated by breadth
of plausible phenotype coverage =><=to
accuracy/precision of prediction

GA =>too many fixed parameters

: (intervention length, number of

- interventions in sequence) => alternate
machine learning techniques to be more
1 efficient (deep reinforcement learning)

Intervention sequence,
saves non-responder

* Original intervention is
shown on the left;
Alternate intervention
sequence shown on right
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